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Universality of random knotting
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Knotting probability@PK(N)# is defined by the probability of anN-noded random polygon being topologi-
cally equivalent to a given knotK. For several nontrivial knots we numerically evaluate the knotting prob-
abilities for Gaussian and rod-bead models. We find that they are well approximated by the following formula:
PK(N)5C(K)@Ñ/N(K)#m(K)exp@2Ñ/N(K)# where Ñ5N2Nini(K), and that the fitting parametersC(K),
N(K), andNini(K) are model dependent, whilem(K) is not. We suggest that given a knotK, the exponent
m(K) should be universal: it is independent of models of random polygon and is determined only by the knot
K. @S1063-651X~97!09004-1#

PACS number~s!: 05.40.1j, 61.41.1e, 36.20.Ey
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Recently knotted ring polymers such as knotted DN
molecules are synthesized in various experiments in che
try and biology@1–3#. In particular, the formation of knotted
species on random ring closure of DNA was observed
their fractions were measured@4,5#. In statistical mechanics
the topological constraint that a ring polymer does n
change its topology under any thermal fluctuation leads
great reduction in the available volume of the configurat
space @6#. The topological constraint, or the sel
entanglement effect, is derived from the fact that any bo
between neighboring monomers in the ring polymer is
disconnected when the bonding energy is very large.

In the 1960s Delbru¨ck formulated a fundamental questio
about the self-entanglement of a ring polymer: What fract
of permissible configurations of a chain of given length w
contain a knot@7,8#? The fraction of knotted ring polymer
has been studied from the following three approaches:
merical experiments using certain knot invariants@9–18#,
mathematical discussion of the self-avoiding polygon@19–
21#, and biological experiments using DNAs@4,5#.

Let us assume that a model of anN-noded random poly-
gon describes a ring polymer withN bonds. Given a knot
K, we define knotting probabilityPK(N) to the model by the
fraction of those configurations of the random polygon t
have the same knot typeK. The main questions in this pape
are how the knotting probabilityPK(N) behaves as a func
tion of step numberN for each knotK, and how it depends
on models of a random polygon.

For the trivial knot (K50) we call the knotting probabil-
ity P0(N) the unknotting probability. It has been evaluat
for several different models of random polygons with diffe
ent lengthsN less than about 2000@9–14#. The exponential
decay ofP0(N) with respect toN has been discussed for th
molecular dynamical model of ring polymers by Michels a
Wiegel, and for the rod-bead model by Koniaris and Muth
kumar @11,14#.

For nontrivial knots, however, the knotting probabilitie
have been evaluated only for short polygons withN,200,
where the graphs ofPK(N) versusN can be approximated
by linear functions ofN @9#. When we calculate knot invari
ants for polygons with largeN, there are two technical dif
ficulties: memory-size and computation-time problems@22#.
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For polynomial-valued invariants such as the Alexand
polynomial ~or Jones polynomial@23#, etc.!, the size of the
memory necessary for computing them will grow expone
tially or very rapidly with respect toN. For instance, if we
evaluate a termtN for N5103 setting 2 tot, then we have a
very large number 21000. Furthermore, for many link polyno
mials such as Jones, HOMFLY, and Kauffman polynomia
the computation time will grow exponentially with respect
N @22,24#.

Recently, new methods have been independently p
posed for computing certain knot invariants in polynom
time @22,25#. Thanks to these methods, we can practica
determine the knot types of given large polygons. The p
pose of the paper is to show some universal properties of
knotting probabilityPK(N) regarded as a function of ste
numberN. We discuss them from computer simulations
PK(N) of several nontrivial knots for different models o
random polygons. We apply to the data the formula@16#

PK~N!5C~K !@Ñ/N~K !#m~K !exp@2Ñ/N~K !#, ~1!

where the symbolÑ denotesÑ5N2Nini(K), and C(K),
m(K), N(K), andNini(K) are fitting parameters. We con

TABLE I. The values of the determinant of the knotuDK(21)u and that
of the j th coefficientv j (K) in the expansion of the Jones polynomial forj 5
2, 3, and 4. Symbols 31(1) and 31(2) denote the mirror images of the
trefoil knot. SymbolK1]K2 denotes the product~or the composite knot! of
K1 andK2.

Knot K uDK(21)u v2(K) v3(K) v4(K)

31(1) 3 212 60 2199

31(2) 3 212 236 255

41 5 12 212 31

51(1) 5 236 276 21365

51(2) 5 236 2204 2645

52(1) 7 224 168 2758

52(2) 7 224 2120 2326

31(1)]31(1) 9 224 120 2254

31(1)]31(2) 9 224 24 2110

31(2)]31(2) 9 224 272 34

31(1)]41 15 0 48 2312

31(2)]41 15 0 248 2168

41]41 25 24 224 208
6245 © 1997 The American Physical Society
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sider two types of random polygon models, the Gauss
model @10# and the rod-bead model@12#. For the rod-bead
model we change the bead radiusr which describes the self
avoiding effect.

Let us explain our method for evaluating the knotti
probability @16,22#. We first construct many configuration
of anN-noded random polygon, for example,M configura-
tions. For each one of the configurations we calculate b
Vassiliev-type knot invariants of order less than 4 and
Alexander polynomial evaluated att521, and then we
practically enumerate the numberMK of those configurations
that have the same knot typeK: for a given configuration
C we search such a knotK1 that has the same set of valu
of the invariants with that ofC, and we assume that the kn
typeK of C is given by the knotK1. We evaluate the knot
ting probabilityPK(N) by the ratioMK /M .

The Alexander polynomialDK(t) is a topological invari-
ant ~isotopy invariant! of knots and links, which is given by
a Laurent polynomial of variablet @27#. For the knotK, we

FIG. 1. ~a! A diagram of prime knot 31 with 3 crossing points.~b! A
diagram of composite knot 31]31.

FIG. 2. Semilogarithmic plot of the unknotting probability versus st
numberN ~the number of nodesN) for the Gaussian model and the rod-be
models withr50.05, 0.10, 0.15, and 0.20.
n

th
e

call uDK(21)u the determinant of the knot. We can calcula
the Alexander polynomial in polynomial time with respect
the numberS of the double points of a given link diagram
since the invariant is defined as a determinant of anS3S
matrix @27#. In the previous numerical works@9–14#, all the
authors employed the Alexander polynomial evaluated
special values oft, in particular, the determinant of the kno
It seems that the determinant of the knotuDK(21)u was the
only known invariant practically useful for search of the kn
types of large polygons.

Vassiliev-type~or finite-type! invariants are topological
invariants of knots and links defined by some recurrence
lations @28,29#. It is known that the coefficients of the qua
siclassical expansion of the link polynomials associated w
the quantum groups give Vassiliev-type invariants@28#. Let
VK(q) denote the Jones polynomial of a knotK @23#. Its
quasiclassical expansion is given by the expansion aro
q51,

VK~q!511v2~K !e21v3~K !e31v4~K !e41•••, ~2!

FIG. 3. Knotting probability of the Gaussian model for knots 31,
31]31, and 31]31]31.

FIG. 4. Knotting probability in the case of the rod-bead model wi
r50.05, for knots 31, 31]31, and 31]31]31.
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wheree5q21. The coefficientsv2(K), v3(K), andv4(K)
give Vassiliev-type invariants of order 2, 3, and 4, resp
tively.

Utilizing oriented state sum models we can calculate
Vassiliev-type invariants derived from the quasiclassical

FIG. 5. Knotting probability in the case of the rod-bead model w
r50.10, for knots 31, 31]31, and 31]31]31.
-

e
-

pansion of quantum link invariants@16,22#. The method has
the following advantages:~i! we can calculate the invariant
in polynomial time with respect toN, and~ii ! we can calcu-
late them without using a large memory area. We note t
there are other methods for polynomial-time computation

FIG. 6. Knotting probability in the case of the rod-bead model w
r50.15, for knots 31, 31]31, and 31]31]31.
f
ith
TABLE II. The estimates ofm(K), C(K), N(K), Nini(K), and thex2 values of the fitting curves to the data o
PK(N) for the Gaussian model and the rod-bead models withr50.05, 0.10, 0.15, and 0.20. For the rod-bead model w
r50.20 the order of the values ofN(K) andNini(K) is given by 103. For the other models it is given by 102, e.g.,
N(0)534064 for the Gaussian model. The parameters of the fitting curves in Figs. 2–6 are given here.

Knot K m(K) C(K) N(K)31022 Nini(K)31022 x2

Gaussian random polygon~22 data points!
0 20.005160.0190 1.056 0.87 3.4060.04 20.0162.84 37
31 0.88860.024 0.63160.004 3.5060.04 0.1960.02 24
41 0.9160.05 0.13060.002 3.4960.09 0.2860.04 30
31]31 1.8560.05 0.19860.005 3.5160.05 0.2460.04 16
31]41 1.9060.07 0.07860.003 3.4960.08 0.2760.06 26
31]31]31 2.8060.11 0.04260.005 3.5460.09 0.2360.12 20

Rod-bead model withr50.05 ~21 data points!
0 0.0060.10 1.0651.0 2.760.2 0.06136.0 16
31 0.9860.09 0.6060.02 2.760.1 0.160.1 16
41 1.160.2 0.1260.01 2.560.2 0.260.1 14
31]31 1.960.2 0.1960.02 2.860.2 0.260.1 13
31]41 2.160.3 0.07060.015 2.760.3 0.060.2 14
31]31]31 2.460.4 0.06560.019 3.160.3 0.660.3 13

Rod-bead model withr50.10 ~20 data points!
0 20.0860.26 1.161.6 4.260.4 20.166.2 32
31 0.9160.10 0.6760.02 4.260.2 0.260.1 14
41 0.860.2 0.1260.01 4.460.4 0.360.1 17
31]31 1.860.2 0.2660.02 4.460.3 0.360.1 16
31]41 1.860.2 0.09460.011 4.460.4 0.360.2 18
31]31]31 2.660.3 0.07960.023 4.460.5 0.660.3 12

Rod-bead model withr50.15 ~20 data points!
0 20.0160.10 0.962.2 8.260.5 20.1619.3 27
31 0.9060.11 0.7660.03 8.560.5 0.260.3 23
41 0.960.2 0.1060.01 8.560.9 0.360.5 6
31]31 2.060.2 0.3060.04 8.360.6 20.160.4 10
31]41 1.960.3 0.08260.017 8.561.0 0.160.7 18
31]31]31 2.760.5 0.1160.05 8.361.1 1.461.0 14

Rod-bead model withr50.20 ~20 data points!
Knot K m(K) C(K) N(K)31023 Nini(K)31023 x2

0 0.0160.35 1.066.5 2.260.6 20.1613.1 15
31 0.960.2 0.8460.04 2.360.5 0.060.1 8
31]31 2.160.4 0.3860.14 2.260.7 0.060.1 36
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certain knot invariants@25,26#.
We should note that the fact that two knots have the sa

value of a certain computable knot invariant does not im
that they are topologically equivalent. If we combine seve
independent knot invariants together, then we can determ
the knot type of a given polygon more exactly. For instan
the determinant of the knot has the same value 5 for kn
41 and 51, while the Vassiliev-type invariantv2(K) gives
different values for them~see Table I and Fig. 1!.

Let us discuss the numerical results. For a given s
numberN we have constructed 105 polygons for the Gauss
ian model (M5105), and 104 polygons for each of the rod
bead models (M5104). For the Gaussian polygon we mak
use of the conditional probability distribution of thej th step
(1< j<N) @10#. For the rod-bead models, we first constru
2M chains with step numberN/2 by the dimerization
method, and then makeM polygons withN ~orN11) nodes
by the concatenating procedure@12#.

In Fig. 2, the unknotting probabilities for the Gaussi
model and the rod-bead models with four different values
the bead radiusr50.05, 0.10, 0.15, and 0.20 are shown. T
error bars denote the standard deviations. For the Gaus
model the errors are estimated by applying the binomial
tribution to the numberMK of polygons of knotK. For the
rod-bead models we estimate the variance ofPK(N) of knot
K by the sum of the contribution due to the fluctuation
MK and that of the weights in the concatenating procedu
From Fig. 2 we confirm the exponential decay ofP0(N) for
the rod-bead model shown by Koniaris and Muthukum
@14#.

We now consider the case of nontrivial knots. For kn
31, 31]31, and 31]31]31, the data of the knotting prob
abilitiesPK(N) are plotted against the step numberN for the
Gaussian polygon and the three rod-beam models w
r50.05, 0.10, and 0.15 in Figs. 3, 4, 5, and 6, respectiv
From Figs. 3–6 we find that the theoretical curves given
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formula ~1! fit well to the numerical data.
Table II gives the least-squares estimates of the par

etersC(K), m(K), N(K), and Nini(K) together with the
x2 values of the fitting curves. Thex2 values are consisten
with the above observation that the fitting curves are go
The error estimates in Table II correspond to 68.3% co
dence intervals. For the trivial knot the errors ofC(0) and
Nini(0) do not make sense sincem(0)>0; we consider only
those ofN(0) andm(0), which are not too large.

From the estimates ofN(K) in Table II we see that for
each of the models the parameterN(K) of any knotK is
almost equal to that of the trivial knot@N(0)# with respect to
the confidence intervals, whereN(0) gives different values
to the different models. From Table II we also find that t
parameterm(K) of any knot K does not change for the
Gaussian model or the rod-bead models with the differ
bead radii, with respect to the error bars.

The fitting variableNini(K) is important whenN is small
@i.e., forN,N(0)# @4#. WhenN is large, however, it seem
thatNini(K) does not change the fitting curves very much.
fact, the fitting curves in this paper are consistent with tho
of the previous work@16–18# that were given by formula~1!
with Nini(K)50.

From all the numerical results, we suggest that form
~1! of the knotting probabilityPK(N) can be applied to any
model of a random polygon withN(K)5N(0) for any knot
K whereN(0), Nini(K), andC(K) are model dependent
and that given a knotK, the exponentm(K) should be uni-
versal: for any random polygon modelm(K) is given by the
same value and is determined only by the knotK. The ex-
ponentm(K) should be important to the topological en
tanglement effect on the entropy of the ring polymer.

The authors would like to thank Professor M. Wadati f
his keen interest in this work.
let

-

@1# F.B. Deanet al., J. Biol. Chem.260, 4795 ~1985!; S.A. Wasserman,
et al., Science229, 171 ~1985!; 232, 951 ~1986!.

@2# K. Shishidoet al., J. Mol. Biol. 195, 215 ~1987!.
@3# D.M. Walba, Tetrahedron41, 3161~1985!.
@4# V.V. Rybenkovet al., Proc. Natl. Acad. Sci. USA90, 5307~1993!.
@5# S.Y. Shaw and J.C. Wang, Science260, 533 ~1993!.
@6# S.F. Edwards, J. Phys. A1, 15 ~1968!.
@7# M. Delbrück, in Mathematical Problems in the Biological Science,

edited by R.E. Bellman, special issue of Proc. Symp. Appl. Math.14,
55 ~1962!.

@8# H.L. Frisch and E. Wasserman, J. Am. Chem. Soc.83, 3789~1961!.
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